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We consider au equation defining a characteristic function of the probability that the velo- 

cities at two distinct points of a homogeneous, isotropic turbulent flow, differ from each 
other. This equation can be derived from the hydrodynamic equations for an incompressible 

fluid under two assumptions, and has the form 

( 1) where t denotes time, ri = xi C2) - xf G’ = 1, 2, 3), rtfe) (s = 1, 2) denote the coordinates 

of the two points in question, e= - %d <u f >/dt is the rate of dissipation of kinetic ener- 

gy of the flow, n, (z’*‘) is the velocity, f&) =: [exp (ix,u ) P (o)d3u, P(v) is the probabil- 

ity distribution of the difference of velocities and 0, = U, i x(l)) - U, (x(2)). We shall intro- 

duce the following magnitudes 

9;;: exp (ihjuj), E$) = 
au, (x’“‘) auj (x@‘) 

f3Xl(sf a@) 
Mean values of q is the required characteristic function and the mean value of E,$) is 

proportional to the dissipation of the kinetic energy of the flow. 

We shall assume that 0 and I?$’ are statisticaIly independent provided that the Rey- 

nolds’ number is Iarge and the distance between the two points is large compared with TV = 

=Y 3/4 @-1/4. Here v is the coefficient of kinematic viscosity. The magnitude ~8) can 

be defined in terms of Fourier coefficients dZ,(x’I where the wave numbers X’ * I/T. 
Here 

I 

X ur(x)e ? 

-*x.x 

i 

exp (- ix&t) - 1 

Ii 
exp (- ita dxa) - 1 exp (- 

- iZl - iq 

& d’x3) - 1 dsz 

- ix3 1 
The magnitude q can be defined in terms of Fourier coefficients dZ,(?t”) where the 

wave numbers X” * l/)x(l) - x(2)( = I/r. If the Reynolds’ number is large and I > 7, 

then dZ, (XI’) and dZ J’S”) are, according to Kolmogorov [ 11, statistically independent, In 
view of this, our previous assertion is sufficiently probable. 

We shall also assume that there exists a correlation between q and l/lk. Here 

ap {x(l)) ap (~(2)) 
ljk=------_~ 

13Xp axK(2) 
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and p is the pressure divided by the density. 

Mean value of the product of the above magnitudes characterizes the effect of pressure 
forces on turbulence. It is generally accepted that this effect reduces to redistribution of 
the energy between two vortices of the same size but different spatial orientation and re- 
sults in the tendency of the turbulence to become isotropic. As soon as it happens we can 
in the first approximation, neglect the above effect. 

Under those assumptions, the equations of hydrodynamics easily yield the required equa- 

tions. We have 

+ uj (x’2’) 
dul, (x(2)) 

&j(2) - 21% + vAuk (x(l)) - YAZQ (xc2))) (1) 

Our first assumption leads to 

= ivhk ((p (Auk (X(l)) - AUl, (Xc2)))) - 2Vhjkk (&jk> (Cp} 

while the second assumption yields 

i&k (‘F’$k> = 0. 

Formulas (1) to (4) give 

af ----xi aa/ 
at ~k+2v$t2V(ej3hjhkf 

when r > q, 2~a2~~ark 2 is vanishingly small and 

(4) 

In the derivation of (5) we have used the relation v<eik> = l/3&,, which follows from 

the isotropic character and homogeneity of the flow. 

Eq. (51 should be solved with the following boundary conditions: f= 1 when r = 0 and 
~~/~~* = 0 when 1 h/ = 0. The last condition follows from the relation <ttn> = 0. 

We can integrate (5) in quadratures. Before doing it, let us consider its properties and 

two limit cases which it describes. 
Expanding f into the Taylor series in h, inserting it into (5) and equating the coefficient 

accompanying h, to Zero, we obtain a continuity equation for the second moment of the vel- 

ocity field. Equating to zero the coefficient of X,h, yields the well known von K&&nn- 
Howarth equation. Later we shaI1 derive relations connecting the moments of orders n, n + 1 
andn - 2 (where n is an integer). 

Applying the inverse Fourier transform to (5) we obtain an expression for the probability 
distribution of the difference of velocities at two distinct points in the form 

aP aP 2 lYP 
--- 
at - ‘lr 8r, --ya&q 

resembling a diffusion equation of an inert component in the six-dimensional (vi, r,f-space. 
Let US consider the behavior of (5) as I + 00, assuming that <r+> = 0. All point moments 

of odd orders are, by the virtue of isotropy, equal to zero and we have, in this case, f+ F 2 
(A), where F is the characteristic probability function of velocity at a single point. Conse- 
quently, when r + m, (5) yields 
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from which we find 

F (b, t) - F (5, 0) exp I -Va ((uk9 - (uka (O)))A$l 

If <uk2> = 0, then F = 1 and 

F (k, 0) = eXp [- l/e &‘<Uk’ (@>I 

Therefore 

(7) 

F = exp [- t/e hka ( uk’) 1 

i.e. the probability distribution of velocity at a point obeys the usual law and this confirms 
the experimental data of Townsend [z]. 

Formula (7) shows that Eq. (6) need not have a physically plausible solution with any 
type of initial conditions. This may come as a surprise until we remember that Eq. (6) was 
obtained under definite assumptions which were valid when the turbulence was in a - so 
called - “equilibrium” state. A certain wount of time elapses before this state is reached 

and the function F assumes the form (7) during this period. 
Let us consider another limit case when r is small enough to fall within the inertial in- 

terval. In addition, from the dimensional analysis and isotropy we cau infer that f should 
depend on the following two variables only 

.2 = m(8r)%, y = hjrj/r I/&% 

Taking this into account we obtain, from (5), 

1 af % -‘I, d” - -j-Z-T&-’ 8 dt - i +y$+$yz8$!+ 
[ 

f (1 - ya) az - 

which in turn yields 

-~y(i-~~)~+~(lfy~)~-~izff=O (8) 

when r + 0 or when t + Q). 
The solution of (8) with the conditions that f = 1 and df/6’z = 0 when r = 0, represents 

the characteristic function of the required probability distribution in the inertial interval. 

Eq. (8) is hyperbolic for all values of z and y, which are physically meaningful (04 z < 
< 00, Irl& 1). Since the line z = 0 represents its characteristic, we have two possibilities: 
(1) - a solution does not exist; (2) - a solution exists and is not unique. Simple analysis 
shows that the condition of compatibility holds, hence the assertion (2) is valid. 

Eq. (8) connects the moments of orders n and n + 3. The relation is constructed in such 
a manner, that the (2n + 3)-th order moment is expressed in terms of the 2n-th order moment 
uniquely, while the 2n-th order moment is given in terms of the (2n - 3)-th order moment and 

includes, in addition, an arbitrary constant. 
Indeed, let us write f aa 

f=i i -%I,,~ 
inzn ym 

?a==0 m--o 
(where m is an integer) and let us insert it into (8). Equating to zero the coefficients of 
zn-lyrn-l gives 

A 
(n-m + 2) (n - 3m + 6) 

n,m=- m .(4n - 3m + 6) 

A 
n, m-a - 

2n(n-l)(n-Z)A 
m (4n - 3m + 6) -3, m+l 

from which we easily see that when n is odd (m = 1, 3,..., n ) then we have the same number 
of equations and unknowns, while for the even n (m = 0, 2,..., n) the number of unknowns 
exceeds the number of equations by one. 
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AS an example, we shall give first six moments different from zero 

<TIn9> = &,o, (V,%) = % A&o 

<YRV,) = - 4115, (Vp3) = - ai’s 

(V,4) = -40, (Vn3VpS) = l/e A4,o; (VIp4) - 9/m A4,o 

(Vn4V*) = - ‘4/33 A&O, (Vn2Vp3) = - 353/3e~ A,o, (Vp5) = - 14’o/s~~ Aa,o (9) 

(vn6) = ilS,O, (Vn4Vp2) = %o As,0 + */15, (V2Vp4> = %o de.0 + 6115 (Y/j = l/o -Go + 4 

<V,‘) = - “/3x Aso; (Vn4Vps)= --5=,&, A4,o; (V,,‘Vp~>== --“s/s Ad,0 (VP’)= -43’=/775 Aa,o 

Here p refers to the component of the vector Vparallel to r, n - to the component per 
pendicular to c and V = v(&r)-l/3. Formulas (9) yield 

(vp5)l(<vp?) (vp3>) = ?350/301, (Vp3Vn2> l(<vp3> (vn”>) = 1766/1564 

(vp’)l((vp*) (vp”>) = 469/31, (Vp3”n4) 1 (C vp9 ( vn9) =964’/1*05 

Constants A, o and A, u 
s 

cannot be arbitrary. Inequalities 

(~t+)%*<nps> IO+*> - ((v$?>)% <v,a> > (<vn”>)” 

together with (9), yield 

il4,o > a013 (6/J’“, ‘46lO >, 6ias P/3$” 

Study of higher order moments leads us to the conclusion that the magnitudes A,, ,, 
are always restricted in a certain way, namely, we require that each Azn,o should be not 

smaller than a certain number depending on A .m_2,0, A 2n_4,0,..., A 2,0 _ 

The above constants cannot have very large values, because the series defining the 

characteristic function will then not converge. This allows us to obtain a definite upper 

bound for the values of A, o using the equation for the probability distribution of velocity 

differences, which has the !orm 

(w = .y-iq (er)_ Ys, cl =2 Vjrj/r VQ, Ill = P (&r)-I) 
within the inertial interval and is elliptic. We may find that its solution need not be unique 
since the coefficients accompanying the unknown function (- w u.) changes its sign. How- 

ever in this case another restriction comes into force namely: that the function n(w) should 

diminish sufficiently fast for the integrals of the form 

CO1 

ss 
II(w;a)wndudw 

0 -1 

to converge. 
Let us now obtain the general solution of (5). The function f - F2 obviously satisfies 

(S), and its Fourier transform exists. Therefore we can apply Fourier transformation to (S), 

in which f is replaced by f - F? This results in 

a@ 
ZZ”ir8$ + $h$D 

where Cp is the Fourier transform off - F2. This in turn yields 
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which does not however contribute much information, since as usual, the initial conditions 
are not known and cannot be set arbitrarily. 

The above ideas can also be applied to determining the probability distribution of the 
concentration of an inert component which is statistically homogeneous, in a homogeneous 
turbulent flow. It is sufficient to assume that the magnitudes ei PC and DA %/4xk2 = x are 
statistically independent provided that the Reynolds’ and Peclet numbers are sufficiently 
large. Here c is the concentration and D is the coefficient of molecular diffusion. Analogous 
procedure yields 

8 (eipc) / t38 I (x> f_ca teipc) (10) 

which resembles (6) and where <x> characterisin g the rate of mixing of the substance 
down to tbe molecular level, is analogous to E. 

Solution of (10) with the condition that Ce*po> = e p i (dwhen<c2>=<c>2, has the 
form 

(eipc> = exp [- f/e ((ca} - (c)~) ps + i[d (c>] 

i.e. the probability distribution of the concentration of the added substance obeys the usual 
law. 
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